
.

.

NATIONALADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2401

0

TEMPERATURE DISTRIBUTION IN INTERNALLY HEATED WALLS

OF HEAT EXCHANGERS WITH NONCIRC ULAR FLOW PASSAGES

USING COOLANTS WITH VERY LOW PRANDTL NUMBER

By E. R. G. Eckert and George M. Low

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

v

Washington

July 1951

-J

-. . .. -...



TECHLIBRARYKAFB,NM

Iullllllllllnulllllnu
CIilb5b3q

.

N/)TIOIWiLADVISORY COlMDT13E FOR AERONAUTICS

‘133CHNICALI?OTlI2401

~ DISTRIBUTION IN IWZEOWLY ‘HEATEDWAILS OF EllM!I!EXCHANGERS

WITH I?ONCIRCULARFLOW PA!3SMXS USING COOIJWJ3 WITli

VERY

By E. R. G.

mwmmmmmm

Eckert and George M.

tsuNMARY

In the wa12s of heat exchangers that sre composed of noncircular
passages, the temperature varies-in a cticumf=enti.aldirection. A
prediction of the magnitude of this vmiation is necessary in order to
detect the places of highest temperature and to determine the operating
temperatures admissible for the material of which the heat exchanger is
composed.

A method for the determination of the temperate distribution
within the coolant and the passage walJs fo.’a special type of heat
exchanger is presented. The heat exchanger is composed of polygonal
flow passages which are heated uniformly by internal heat sources. The
Prandtl ntier of the coolant flowing through the passages is postulated
to be so low that the turbqlent contribution to the heat flow within the
fluid can be neglected. The differential eqwkl.on describing the heat
flow by conduction is solved by the relaxation method. Numerical com-
putations are csrried out for a triangular and a rectangular passage
shape. The resulting ratio of the temperature differences within the
passage walls to the difference of the wall temperature and the fluid
bulk temperature is considerably larger than the temperature ratio h
s~lar heat exchangers using a coolant with a Prandtl nuniberin the
neighborhood of 1.

INTRODUCTION

The conventional recuperative type of heat exchang= consists of
passages for two fluids separated by a heating surface. Heat from an
exbernal source is transferred continuously from one fluid to the other
through the heating surfaces. In the regenerative type of heat
exchang6r the two fluids pass alternately through the same passages.
During the heating period heat is transferred from a hot fluid to the
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passage
cooling
passing

walls and is stored within the solid wall material. During the
period this stored heat is~then transferred tQ a cold fMid

1

through the heat exchanger.’ #

The “heatexchang= considered in this report is very stilar to the
regenerative type. It cliffers from it only by the fact that the heat is
generated int=nalJg by heat sources located within the passage walls
and is transferred to a coolant flowing continuously through the pas-
sages. The heat-exchanger passages are formed by a rnmiberof plates
assenibledto form a honeyconb. High temperatures may be anticipated
near the corners of the flow passages thus formed. A lnmwledge of the
m~w of these tmperaties is necessary in order to determine the
admissible operating temperature of the heat exchanger.

In a previous report (reference 1) the temperature distribution in
the walls of similar heat exchangers was studied with the assumption
that the coolant consists of a fluid with a Prandtl nuniberin the neigh-
borhood of 1. In the present report, the investigation carried out at
the NACA Lewis laboratory, is extended to include coolants with a
l%mndtl number very much less then 1. The Pmndtl number is assumed
to be so low that the turbulent contribution to the heat transport
within the fluid can be neglected as compared with the conductive
contribution

A krmwledge of the velocity distribtiion within the passages is
necessary in order to detamine the temperature distribution. A thor-
ough investigation of the flow of water through tu3es with noncircular
cross sections was made by I?ikuradse(references 2 and 3). The velocity
profiles obtained in this investigationwill be used in the present
report.-

The analysis presented applies to all passage shapes for which the
velocity distribution is known and to all possible configurations of
these passage shapes. ‘Solutionsare presented, however, only for heat
exchangers composed of triangular and rectangular passages. Cross-
sectional views of these configurations are shown in figures 1 and 2.

SYMBOLS

The following syuibolsare used in this report:

A cross-sectional flow area, (sq ft)

A* A/D2, (tiensionless)

2’
N

.— - —.. ——



,

3

c
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D

d

k

L

L*

N

n

n*

EC

P
,

R

R*

r

s

T

U,v,w

\

internal perimeter of pass%e, (ft)

specific heat, (Btu/(lb)(~))

hydraulic diameter, 4A/c, (ft)

distance between pma~elphtes, (H)

acceleration due to gatity, (ft/sec2)

thermal conductivity of coolmt, (B~u/(see)(R) (%))

distsnce measured along passage wall-in circumferential
direction, (ft)

L/D, (m~io~ess)

residual value, (dimensionless)

coordinate normal to passage wall-j(ft)
.

n/D, (tiensiotiess)

Prandtl ntierj (vpcg)/k, (dtiensiofless) ,

summation index

radial coordinate, (ft)

R/D, (Mmemiotiess)

rate of internal heat generation, (Btu/(see)(cu ft))

wall thiclmess, (ft)

temperature, (%?)

n

bulk temperate of coolant, &
JtiA

u T dA, (%)

wall temperature, (%)

T&#, (&ensionless )

velocity components in X-2 y-~ and z-directiom ~ (ft/see)
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u*

‘J Y)z

x*,y*,z*

A

A*

c

v

P

T

D
E

V2

mean velocity, ~
I

udA, (ft/see)
A

u/fi, (dimensionless)

Cartesian coordinates

x/D, y/D, z/D, (dimensionless)

incrementoof length, (ft)

A/D, (dimensionless)

turbulent dMfu&iv5.ty of heat, (sq ft/see)

kinematic viscosity, (sqft/see)

mass density, ((lb)(sec2)/ft4)

time, (see!)

( imaterial derivative,
)

&+u:+v&+w=

Laplacian operator,
( )

32 a2 2+a—+- —
ax2 ay2 az2

Slibscrip%s:

c conditions

m conditions

Superscript:

for equivalent circular tube

at

* tiensionless

center of flow passage

qwtity

NACA ZTJ2401

ASSQMPl!IOI?S

A number of assumptions are necessary in order to make the problem “
amenable to solution and to obtain results of a general nature. The
following assumptions are in agreement with reality for the applications
considered:

— ——— —— -.—— . .
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1. The Rrandtl nmiber of the fluid used as coolant is so small.that
the heat flow by the turbulent ting movements can be neglected as com-
pared with the heat flow by conduction. In reaMty the turbulent con-
tribution to the heat flow is of some importance even in liquid metals
used as coolants. Therefore, the calculationspresented herein deal
with a Mmiting case. In a previous report (ref=ence 1) analogous
calculationswere presented for a fluid with a Prandtl nunioerof 1.
lhom the results of reference 1 and the results presented herein, it
should be possible to estimate the conditions for any fluid with a
small l%andtl number.

2. The passages of the heat exchang~ are long enough and the Reyn-
olds number is sufficiently high so that in the woss section investi-
gated the flow is fully developed and turbulent. This means that the
velocity profile does not change its shape in the direction of the tube
axis.

3. The property values for the coolant are constant. Under this
condltion the flow is independent of the Prandt1 number and has the same
characteristics as determined by lUlnradse for water.

4. The rate of heat generation in the walls of the heat exchanger
is uniform. Consequently the temperature within the coolant and the
walls increases Mnearly in a downstream direction provided the flow
is thermally developed. By extrapolation of results for fluids with
Prandtl numbers great= than 1 (reference 4), it is found that for a
fluid with a Rrandtl number less than 1 the ttie length required-for
thermal development is not greater than the Me length needed for
velocity development.

5. The thickness of the passage walls is small as compared with
the hydraulic diameter. Consequently the heat conduction within the
walls of the heat exchanger will be neglected as compared with the heat
conduction within the fhid. Coolants with a low Prandtl nmber are
fluids with a high heat conductivity value. Therefore, h all prac-
tical cases the heat conductivity of the wll material is not larger
than the heat conductivity of the fluid and the conduction in the wall
can be neglected as long as the wall.thicbess is not too large.

DR?WBENTJMJ EQUATIONS DESCRIBING HEAT FLUW WJXKIN COOLANT

The flow field within the coolant flowing through the passages is
described by the continuity and the momeritumequations. The tempma-
ture field which is superimposed on this field is given by the energy

—. —— —— .-— —.
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equation. As long as the property values of the coolant are independent
of temperature and as long as free-convection effects can be neglected,

.

the cliff@?ential equations describing the flow field sre independent of
the energy equation. The flow field therefore remains unchsmged when a
heat flow from the passage walls is added to the fluid and is also inde-
pendent of the Prandtl ntier. Measurements of the velocity profiles
within noncticular passages which were made by Nilnmadse (references 2
and 3) on water therefore describe the flow field for any other fluid.
These profiles will be used in this report.

The temperature field within a turbulently flowing coolant is
described by the following equation when the temperature rise by inter-
nal friction can be neglected:

(1)

The temperatures T in this equation are tiqe mean values and all the
contributions of the tmbulent mixing processes to the heat flow within
the coolant are sumnarily contained in the term ~2T. The first term

()
Witti the bracket & can be expressed as & by definition of the

pcg
Prandtl number. It is lmown that there exists, if any, only a minor
dependence of the turbulent diffusivity e on the Pmndtl number.
Therefore, with decreasing Prandtl nwiber the first term h the bracket
of eqpation (1) becomes more and more @ortant and finally for very
small Prandtl nunibersthe second term cV% can be neglected as com-
pared with the first term. Thus the clifferential equation (1) reduces
to

m—=
m’

& V2T (2)

A Cartesiam coordinate system may be srranged withh the flow passage
h such a way that the x-axis is parallel to the axis of the passage
and normal to the plane of the drawing in figures 1 and 2. The y- and.
z-sxes thereface Me within a cross section of the passage. In fully
developed flow only velocity components in the x-direction are present.
(The velocities connected with the secondary flow detected by IHJnmadse
and described in reference 1 are small as compared with the axial

velocities.) Under this condition the derivative DT~~ is, for steady

state, equal to u
E“ ‘e ‘atient 2

is a constant according to

assumption 4. Th=efore, equation (2) may be written as
●

.— .—
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Pr ~ ~2T + ~2T
~u —— (3)

= = 3Y2 az2

This differential eqyation describes the temperature field within the
fluid h any cross section of the passages.

The value of the temperature gadient in equation (3) can be
%.

connected with the internal heat generation by a heat balance made up
for the entire perimeter enclosing one of the fluid passages. For
reasons of symmetry, half of the total-heat generated within the wall
which surrounds one passage is transferred by conduction to the fluid
flowing through this passage and increases its temperature in the axial
direction:

rsC -Z)T
—= ogcuA-&2

This equation is used to replace the gradient
E

in equation (3).

a2~+ a% ursC

p s=:=

(4)

(5)

The boundary condition is determinedly the fact that all the heat
generated by internal heat sources within the passage walJs must in
steady state be transferred into the coolant. Since, according to
assumption 5, the heat conduction within the passage-walls can be neg-
lected, this condition applies to any differential length dC along the
circumference of the passages (fig. 1). Each passage wall.borders on
two fluid passages (a and b in fig. 1) and the heat flow transferred
by conduction into the coolant on both sides must be equal to the inter-
nal heat generation witti the wall. This relation is describedby the
equation

(6)

where n denotes the outward normal to the passage wall surface and
the two indices a and b refer to the two fluid passages. The inter-
nal heat generation r per unit volume is postulated to be constant.
Therefore,

(7)

—.—. . .. .. —-— ..—.. .—— —— .— — .-— ..— —
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Equations (5) and (7) describe the temperature field within the coolant.

DlM2N310NIJ3SSVARIABLES

In order to generaMze the analysis, by reducing the nuder of
parameters, the equations derived in the previous section are
formed with the aid of the folbwing dimensionless variables:

where the hydraulic diameter D is defined as four times the

trans-

cross-
sectional flow area divided by the circumference of the passage. Eqya-
tions (5) and (7) become

and

~2T*+ a2T*= AU*—.

aY*2 8z*2

[( )1 aT*
-2 Pa+

Equations (8) and (9) together

( l?]aT*
aii= =-1

with a symmetry condition fully

(8)

(9)

detern&e the p;oblem. A typical symmetry condition is shown in fig-
ure 1. Here the normal derivative at point 1 and directed towards pas-
sage b is equal.to the normal derivative at a similarly located
point 2 and directed towards passage a.

The dimensionless velocity u* is a function of y*, z*, and
the Reynolds nuuiberand expresses the shape of the velocity field in
the passage. For noncircular passages the velocity field is lmown only
from Nikuradse1s measurements for Reynolds numbers of about 40,000.
Experiments with circular tubes have shown, however, that the shape of
a turbulent velocity profile changes only sl&htly with Reynolds number.
In adMtion, the temperature field is not influenced strongly by the
velocity field (appendix A). The dependence of u* on the Reynolds
nuniberwilJ therefore be neglected, and the velocity profile wilIlbe
regarded as a unique function for any specific passage shdpe. Equa-
tions (8) and (9) then have a unique solution for any given passage
configuration.

— — —– —
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CALCULATION OF ~

An analytic solution of equations (8)
when u* is a given analytic function of

.

9

DISTRIBUTIONS

and (9) can be found 0~

y* &la z? and when the
boundaries of the passages are relatively shple shapes. Neither of
these conditions apply to the problem under consideration. The equa-
tions are therefore solved numericallyby means of the relaxation
method. For this purpose they are expressed in finite-difference form.

Consider a ~id, or net of points, placed into a cross section of
the flow passages as indicated in the following sketch:

Y*

_J-

—— —— — —— —

02

01 00 03

I
04 I

I
I I

I-’*-I z*

Adjacent points are sepsratedby a small, but finite, distance A*. The
derivatives of T* at a point O can be approximated by differences of
the temperature at surrounding points. Thus the first derivatives me

U
*-TO*

‘4

4 %.” A“

(.)ar” TI*-TO*

~~o- A*

The second derivatives are approximatedby differences of the first
derivatives and become

— ..— —. .——
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a2T* ~ (T4*.TO*) - (TO*-T2*)

W2
A*2

. a2& ~ (T1*4CO*) - (TO*-T3*)

p Ad

With @ese values, equation (8) becomes

T1* + T2* + T3* + T4* - Ho*

IUICATN 2401 .

T2* + T4* - 2TO*
.

A*2

Tl* + T3* - 2TO*

A*2

2
- 4~*A*2 = O (lo)

a
*

The boundary condition can be expressed in finite-differenceform by
assuming, for example, that points 1, 01 and 3 lie along a passage wall
and points 2 and 4 in two adjacent passages. The normal derivatives
are then expessed as differences of the temperature at points 2, 0,
and 4. Equation (9) becomes

JT*3*J +Y2*1= -1

or

T2*+T4*-2TO*+2A*=0 (U)

In some of the I-at= calculations the wall passes through point O at an
angle of 45° tith respect to the grid. The boundary condition
is then expressed as follows:

.

*+ T4*- go*+ 2JZ* = o
%! + ‘2* + ‘3 (12) -

Equation (10) together with boundary conditions (1.1)or (12) was
solved by the relaxation method for heat exchangers composed of rec-
tangular and triangular passages. In the case of the triangular pas-
sages, the solution is univmsal, that is, it applies to all.heat
exchangers with the same passage configuration,regardless of the phys-
ical Mmension. In the case of the rectangular passages, however, the
solution depends on the width-to-height ratio of the passages. Because
only one ps&icular solution is presented for the rectangular config-
uration, the method of solution for this case will.be described in
detail. The essential features of the relaxation method (see, for
example, reference 5) canbe outMned as follows:

Suppose it is desiredto solve a Qven finite-d.iff=enceeqyation
over a certain area of integration. The eqyation is of the following
type:

.

——
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f(T*) = O “ (13)

The solution of this equation must also satisfy prescribed conditions
at the boundsry of the area of titegration.

First, it is necessary to select a net of points covering the
entire area of integration. The distance A* between net points is
arbitrary, with the accuracy of the final soltiion increasing as the
distance between points is decreased. Next, values of @ are assumed
at each net point. In general, these assumed values of the function
will not satisfy the difference equation, amd the left-hand side of
eqwtion (M) is equal to some residual value N instead of zero. At
any given net poid, it is then necessaryto adjust T* in order to
make N vanish at that point. This adjustment of T* also changes
the residuals at adjacent net points. However, if this process of
adjustment is started at the point at,which the absolute value of N
is peatest, and is then repeated for points at which the value of the
residual is successively less, the correct values of T* for the enttie
net eventually are obtained.

This method is now applied to a heat exchanger composed of rectan-
_passages as shown in figure 2. The problem canbe simp~iedby
taking advantage of the symmetry of the heat exchanger. Lines AB, A12,
and DE are lines of symmetry, and there can be no flow of heat across
these JJnes. Furthamore, the temperature distribution is also cen-
trally symmetric about point C. The temperature distribution need
therefae onlybe found within the area bounded by AEDCB. An enlarged
view of this area, showing some of the net points, is presented in
figure 3.

The approximate finite-difference equation for all internal points
is obtained from equation (10). For point g it is

* *2
Tf* +TC* +Th*+Tk* - 4Tg* - 4ugA = Ng (14)

Point g is the point under consideration,whereas points f, c, h, and
k are adjacent points. For points along a line of symmetry within the
fluid, as fac example point c, the following equation applies.

o
Tb* + 2Tg* + Td* - 4T * - 4UC*A*2c = Nc (15)

Along wall AI),which is also a line of symmetry, equation (n) becomes
(for point e)

2fyf*- ~e* -1-a* . Ne (16)

.—--–—.-. -.———.— -—— ——
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The follq egyation is found for point t and simihr equations apply
for all points along wall BCD

u

.4

* + TU*
‘P

- 2Tt* + r?d*= Nt (17)

Finally, the fol.lowingequation can be derived for the corners of the
walls B and D by first writing an equation analogous to eqmtion (17)
for points m, x, and q, then eMminating Tm* with an equation anal-
ogous to equation (16) for points n and m, and finally eo@ining the
residual values into a single value Nq~

Tn* -I-TX* - 2Tq* + 3A* = Nq (18)

Before computing the residuals at each net poin~, it is necessary to
assume temperatures and to determine velocities at all points. The
velocity distributions u* for triangular and rectangubr passages were
obtained from references 2 and 3 and are shown in dimensionless form in
figures 4 and 5. The temperature level within any cross section of the
passage depends on the distance of that cross section from the passage
entrance and all tmp=atures found will contain an arbitrary additive
constant● It is th=efore possible to assume arbitrarily the tempera-
ture at one point within the configuration. An estimate of all other
temperatures can be obtained from the circular tube solution as pre-
sented in appendix A or the flat plate solution as presented in
appendix B.

Once the temperature distribution has been assumed, it r&mains to
.

determine the residuals at all net points with eqyations similar to
equations (14) to (18). The oint at which N has the largest absolute

3value is then selected and T at that point is adjusted so that the
-!

residual vanishes. The effect of this adjustment on the residuals at
adjacent points is calculated with the aid of the appropriate finite-
Mfference equation. The process is then carried out fw the point at
which the next largest residual appears. Eventually, if the process
is repeated often enough, the residuals at all net points approach .
zero, and the final adjusted values of T* satisfy the approximate
equations at all net points.

The accuracy of the solution can be determhed by increasing the
number of net points. The change in the temperature distribution due
to an increase of the mniber of net points is a measure of the correct-
ness of the solution.

.

.
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RESULTS

I-3

.SJ
-1

The method outlimed in the previous section yas applied to heat
exchangers composed of a large number of triangular and rectanguhr
passages. In each case the passages were staggered in order to mini-
mize the expected hot spots.

Temperate distribution in triangular passages. - The triangular
configuration is represented by figure 1. Each passage in this con-
figuration is an isosceles right triangle. Temperature distributions
in the walls of this heat exchanger are presented in figure 6. The
ordinate in this figure is the dimensionless wall temperatm?e TW*
including an additive constant. Temperate distributions found with
nets of 28, 49, and 91 grid points are ticluded. From a comparison of
these distributions, it canbe seen that the mcdmum error in the final
solution (91 points) is less than 5 percent of the msxhmn temperature
difference.

The additive constant in the solution canbe eti~ted by forming
a difference of the local temperature and the bulk temperature of the
fluid, where the bulk temperature is givenby

1TB.-& uTdA
Au A

or, h terms of the dimensionless variables

1
‘B*

J
= A- A* U*N W*

(19)

(20)

In order to simplify the interpretation of the results of this
paper and for purposes of comparison with the results of reference 1,
the temperature difference (%* -TB*) was divided by a similar temper-

ature difference for a circular ttie (~*-TB* )c, which is found in

appendix A. This temperature-differenceratio for the triangular heat
exchang~ is presented in figure 7. The use of the dimensional temper-
atures T instead of the nondimensional values T* as the ordinate of
this figure is justified when the circular tube has the same rate of
heat generation, wall thic@ess, and hydraulic diameter as the noncir-
cularpassage. Contours of equal tempaature (isotherms)within the
coolant of the triangular heat exchanger are shown in figure 8.

●

✎
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Temperature distribution in rectangular passages. - Figure 2 rep-
resents the rec@ngular configuration. The width-to-height ratio of
each passage in tl& configuration is 3.5. The temperature-difference
ratio (~-TB) /(Tw-TB). for this heat exchanger .isshown in figure 9.

The temperature distribution for tbi.scase was found with a relaxation
net of 79 points. The accuracy of this solution, however, is at least
as good as the accuracy of the solution for the triangular heat
excknger, because the dimensionless distance between net points is
smaller for the rectangular heat exchanger. Contours of eqml tem-

‘ perature within the coolant are shown in figure 10.

The width-to-height ratio of each passage in the rectangular heat
exchanger is 3.5. It is to be expected, however, that the temperature
distribution near the corners is the same for passages with any ratios
greater than 3.5. Proof of this supposition canbe found in figure 11,
where the temperature profile within the coolant on a normal to the
wall at point C (fig. 2) is compared with the profile between two par-
allel infinite plates (appendix B). It is assumed that the distance d
between opposite walls is the same for both solutions. The comparison
is unsatisfactory when the temperature difference is based on the bulk
temperature of the entire passage, %ecause that particulim bulk tem-
perature includes much of the low velocity coolant near the corners.
If, however, the temperature difference is based on a local bulk tem-
perature existing at the section of the passage under consideration,
(dashed curve) then the agreement is excellent. This agreement shows
that the influence of the corners on the flow of heat at a station
halfway between the corners is already very small for a width-to-
height ratio of only 3.5. Thus, the influence of one corner on the
opposite corner is even smaller, which means that the temperate dis-
tribution in a corner of the rectangle with the width-to-height ratio
of 3.5 does not diffff markedly from the temperature field in the
corner of a rectangle of any ggeater ratio.

Influence of velocity field on temperature field. - A certain
error may be introduced by the assumption that the velocity profiles
measured by Nikuradse apply under all conditions, even in noniso-
thermal flow. In order to estimate the magnitude of this error, tem-
perature distributions in the cticular Me were calculated for both
a constant velocity and a l/7th power velocity profile. Figure 12
shows that the variation in the temperature distribution caused by
this extreme change in the velocity profiles is not lsrge. It is
therefore believed that a small error in the velocity profiles will
cause a negligible error in the te~erature distribution in noncir-
cular passages as well.

.
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Comarison with I?randtlnumber 1 solution. - A comparison of the
results presented herein and the results of ref=ence 1 shows that the
ratio of the temperature differences in the walls to the ~erence of
the average wall temperate and the bulk temperature in heat exchangers
with triangular and rectangular passages is very fich .g?eaterfor a very
low Prandtl nuniberthan for a Rrandtl nunibernear 1. The dimensionless
temperature difference (~*-TB*) c for a circular ttie and a coolant

with a very low Prandtl nuniberis 0.146 (appendix A). The corr~sponding
temperature difference for a coolant with Pr = 1 is given by eqya-
tion (31) of reference 1:

The dimensionless temperature differences in noncirculsr tubes can be
compsred for R< <land& = 1 by multiplying the temperature-
difference ratios by the appropriate circular tube value. The dimen-
sional temperature differences folJow from the definitions of T*. It
has to be kept in mind, however, that these definitions differ ti the
two reports, and that T* ‘as used in the present report is based on
the therm&l conductivity of the coolant, whereas in reference 1, T *
is based.on the thermal conductivity of the wall material.

A first approxhation of the temperature Mstribution in the walls
of heat
1 might
present

exchangers cooled by fltids with a Prandtl number between O and
be obtained by a linear interpohtion of the results of the
report and the results of reference 1.

CONCLUSIONS

A method to calculate the temperature distribution in a heat
exchanger composed of noncircular flow passages and cooled by a fluid
wtth a Prandtl nuniber much lower than 1 has been presented.

The clifferential equations describing the flow of heat were written
in terms of dimensionless variables, so that their solution becomes a
function only ?f the geometry of the heat exchanger. The equations were
then solved for heat exchangers with triangular and rectangular pas-
sages. In the case of triangular passages, the solution is universal
and applies to all similar heat-exchanger configurations composed of
isosceles right triangles. In the case of rectmgular passages, the
solution is a function of the width-to-height ratio of each passage.
Results for the rectangular heat exchanger were presen>ed only for a
width-to-height ratio of 3.5, but it was shown that these results can
be generalized to include passages with any ratio greater than 3.5.

--- - ..— —
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Temperature differences in the waKls and within the coolant of
these heat exchangers were evaluated numerically. The evaluations show
a pronounced temperature increase nesr the corners of the passages. d

2

A comparison of the ratio of the temperature differences within the
ml

wall to the difference of the average wall temperature and the coolant
bulk temperature of heat exchangers cooled with a fluid having a very
low Prandtl nurtiberand of the same temperature-differenceratio fQr
similar heat exchangers cooled with a fluid having a Prandtl nuder of 1
shtis that the temperature-differenceratios for the low ~dtl number
are much greater thm those for a Prandtl nuniberof 1.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, April 10, 1951.
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.

The transformation of equation (8) into a cylindrical coordinate
system with rotational symmetry results in:

(Al)

If it is assumed that half the heat generated ?1OWS into the tnibe
whereas the other half flows in an outward Mrec;ion, then equation (9)
becomes

uCm*
1

%4=1[2=
(A2)

Eqution (Al) together with boundary condition (M) canbe solved
provided that u* is a kuown function of R*. A simple solution can
be obtained by making the assumption that u* is a constant and equal
to 1. The solution of equation (Al) satisfying (A2) is

&= R*2+Cl (A3)

where Cl is an srbitrary constant. The bulk temperature as defined
in equat~on (20) becomes

TB*

The temperature difference in a
a constant velocity, therefore,

= o.125 +c~ (A4)

cticular tube under the assumption of
is expressed as follows

T* - TB* = R*2 - 0.125 (A5)

A solution more representative of the

r

roblem can be obtained by
assuming that the velocity varies as the 1 7th power of (l-R)

or, in the dimensionless system of coordinates:

(A6)

. . . .-—————___ . —..———
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With this assumption.the solution of equation (Al) becomes

In (zR*) + (l-zR*)
lS[7 +

2

(~-~* )(P+~/7)

“m
-1

(A7)

Equation (A7) has a logaritldmic singularity at F?=O. A solution of
e@ation (Al) at R*=O exists, however. This solution is:

(A8)

The bulk temperature is obtained bymul.tiplying equation (A7) by
u* and integrating each term of the equation. The final solution is

TB* = - 0.146 -I-Cl (A9)

A temperature-differenceprofile is obtainedby subtracting eqya-
tion (A9) from equations (A7) and (A8). This profile is plotted in
figure M, together with a similsr profile as representedby eqya-
tion (A5).

.

,>
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APPENDIX B

‘I!El@ERATUREDISTRIBUTION BETZEEN TWO PARAILEL INFINITE PLATEs

The following equations describe the flow of heat between parallel
plates, efiending to infinity in the z-direction and separatedby a
distance d

-1

(Bl)

(B2)

D=2d (B3)

A solution of this system of eq~tions can be obtained if u* is
a known function of y*. The assumption of a l/7th power profile leads
to the following expression

or

u* =
1[7 ‘

; (4y7

The temperature distribution is then found to be

15/7
T* = & (4y~ -y*.f-cl

The bulk temperature, which is defined by equation (20), becomes

TB* = -&+cl

(B4)

(B5)

(B6)

Thus, the temperature-differenceparameter for the parallel flat plates
is

T* -TB*=~ (4y*$5/7 32
-y*+m o< y*~ l/4 (B7)

.—— — __ -—_—_
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Figure 1. - Cross sectionthroughtypicalheatexchangercomposedof
triangular passages.
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Figure 2. - Cross section through typical heat exchanger composed of
rectangular passages.
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Figure 3. - Relaxation net for rectangukr heat exchanger.
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